Extensions 1→N→G→Q→1 with N=C22 and Q=C3×Dic3

Direct product G=N×Q with N=C22 and Q=C3×Dic3
dρLabelID
Dic3×C2×C648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C22 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×Dic3) = C3×A4⋊C4φ: C3×Dic3/C6S3 ⊆ Aut C22363C2^2:(C3xDic3)144,123
C222(C3×Dic3) = Dic3×A4φ: C3×Dic3/Dic3C3 ⊆ Aut C22366-C2^2:2(C3xDic3)144,129
C223(C3×Dic3) = C3×C6.D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2224C2^2:3(C3xDic3)144,84

Non-split extensions G=N.Q with N=C22 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C22.(C3×Dic3) = C3×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C22242C2^2.(C3xDic3)144,75
C22.2(C3×Dic3) = C6×C3⋊C8central extension (φ=1)48C2^2.2(C3xDic3)144,74

׿
×
𝔽